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Cats are Good for Us!
Category theory studies a given type of structure
by studying its “category”, the family of objects of
that type and relationships among them. Various
constructions are captured by “universal arrows”
and “functors” (homomorphisms of cats). E.g.,
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In DEL, one considers a family ofmodels inwhich
one model is updated to another by constructions
that model informational processes. This is pre-
cisely what category theory is there for!

Categories of Kripke Frames
f : X → Y between Kripke frames is monotone iff
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f is a bounded morphism iff “�” holds instead of
“⊆”, “6”. The cat KrB of bounded morphisms is
“the” cat for static modal logic. But for DEL, the
cat Kr of monotone maps is equally important.
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Kr is “topological over
Sets”: Given any family
of functions fi : X → Yi
to (Yi , Ri), it has a unique
“initial lift”
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i( fi
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(the largest relation pre-
served by all fi), so that fi are universal. It follows
that every limit or colimit in Sets “lifts” to one in
Kr, on the same set and functions. E.g. products:
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Also, every subset i : S ↪→ X of (X, RX) lifts to the
subframe on S. These constructions, essential for
DEL, take place in Kr but not KrB.

Category of Relations
In the cat Rel of sets and binary relations, rela-
tions are ordered by ⊆, and each relation R has an
opposite R†. This makes Rel a “higher cat” and a
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self-dual “dagger cat”.
Rel can express e.g. reflex-

ivity of R : X →p X (i.e. w � v
implying wRv) as 1X ⊆ R. In
particular, Sets is the subcat
of f : X →p Y s.th. 1X ⊆ f † ◦ f
and f ◦ f † ⊆ 1Y .

In Sets, R ⊆ X1 × X2 are
“tabulated” by ri : R→ Xi , so
that R � r2 ◦ r1

† : X1 →p X2.

(Higher) Duality of Relations and Modalities
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Given a relation R : X →p Y, define monotone

∃R(S) � { v ∈ Y | w ∈ S for some w s.th. wRv },
∀R(S) � { v ∈ Y | w ∈ S for all w s.th. wRv }.

Then ^R � ∃R† and �R � ∀R† for R : X →p X. Also,
f −1 � ∃ f † � ∀ f † for functions f : X → Y.

Maps h , k : PX → PY are ordered: h 6 k if
h(S) ⊆ k(S) for all S ⊆ X. Then a theorem:

• ∃− gives an order iso from the relations R : X →p
Y to the all-join-preserving h : PX → PY.

R1 ⊆ R2 ⇐⇒ ∃R1 6 ∃R2 ⇐⇒ ∃R1† 6 ∃R2† .
• ∀− gives an order-reversing iso from R : X →p Y
to the all-meet-preserving h : PX → PY.

R1 ⊆ R2 ⇐⇒ ∀R2 6 ∀R1 ⇐⇒ ∀R2† 6 ∀R1† .
In short, ^R � ∃R† and �R � ∀R† are dual to R.

Correspondence results follow, e.g,
• R is reflexive iff 1X ⊆ R iff �R 6 1PX iff �ϕ ` ϕ.
• R is transitive iff R ◦ R ⊆ R iff �R 6 �R ◦ �R.

Semantics of DEL, Categorically
A submodel is given by the initial lift of i : S ↪→ X,
i.e. RS � i† ◦ RX ◦ i, with ~p�S � i−1~p�X . With
S � ~σ�X , public announcement of σ is
• ~[σ!]ϕ�X � ∀i~ϕ�S, the modality of relation i†

(w ∈ ~[σ!]ϕ�X iff v ∈ ~ϕ�S whenever viw).
• In contrast, ~σ⇒ ϕ�X � ∀i ◦ i−1~ϕ�X is also a
modality, viz. that of i ◦ i†.
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Reduction axioms follow immediately:
• ~[σ!]p�X � ∀i~p�S � ∀i ◦ i−1~p�X � ~σ⇒ p�X .
• The dual of RS ◦ i† � i† ◦ RX ◦ i ◦ i† gives

∀i ◦ ∀RS†~ϕ�S

�

~[σ!]�ϕ�X
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~σ⇒ �[σ!]ϕ�X .

Analyzing product update, RX⊗E is the initial
lift of projections pX � p′X ◦ i and pE � p′E ◦ i in
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• [E, e] is the modality of Re � qe ◦ ie
† � i† ◦ q′e .

• Pre(e) ⇒ − is that of pX ◦ Re � ie ◦ ie
†.

The reduction axiom for � is by the dual of
RX⊗E ◦ Re � (

⋃
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†,
∀Re † ◦ ∀RX⊗E† � ∀ie ◦ ie

−1 ◦ ∀RX† ◦
⋂

eRE e′ ◦ ∀Re′ † .

Application: First-Order DEL
Categorical, structural characterizationmakes var-
ious constructions easier to extend, e.g. to use them
asmodules for combining. One example is to com-
bine first-order and DEL structures, by extending
product update to pullback update.

The key is pX
∗ : Kr/X → Kr/X⊗E, the pullback

functor along the canonical map pX : X ⊗ E → X.
This pulls back a Kripke-sheaf model to another,
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X .
This validates the usual
reduction axioms and
[E, e]∀y.ϕ ≡ ∀y.[E, e]ϕ
for ∀, making FOK plus
them sound and com-
plete.

Appendix: Kripke-Sheaf Semantics
Kripke-sheaf semantics models FOL with a map π :
D → X of “possible individuals” to the worlds
they live in. Take n-fold products Dn

X in the “slice
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• ~ x̄ | ϕ � ⊆ Dn
X interprets an

n-ary formula ϕ in context x̄,
• ~ x̄ | ∀y.ϕ � � ∀p~ x̄ , y | ϕ �.
But each Dn

X is a Kripke frame,
• so ~ x̄ | �ϕ � � ∀RDn

X
†~ x̄ | ϕ �.

Every map involved here is a bounded morphism
if π is a “Kripke sheaf”. It then means a certain
coherence condition that implies
• The simple union FOK of FOL and K is sound
and complete w.r.t. Kripke-sheaf semantics.

Why Merely Monotone Maps?
It is crucial that pX is not a bounded morphism. If
it is, ~ϕ�X⊗E � p−1~ϕ�X and [E, e] boils down to
Pre(e) ⇒ − (so events teach nothing to agents).

Also, monotone maps can tabulate any relation
between Kripke frames, but bounded morphisms
can only tabulate bisimulations.

Much More can be Done
• Categorical analysis of more vocabularies (e.g.
common knowledge), structures (e.g. probabil-
ity), and types of logic (e.g. intuitionistic-based).

• Theory and characterization of reducibility.
• pX

∗ as a map of “toposes” of Kripke sheaves.
• Duality theory with a “syntactic cat” of DEL.


