An Allegorical Semantics of Modal Logic

Kohei Kishida

Dalhousie University
20 Sept, 2018

Kripke semantics of modal logic has a successful model theory: e.g. bisimulation theorems, correspondence theory, duality theory.

Goals

- Give structural accounts of the model theory. -Rel will do the job.

Kripke semantics of modal logic has a successful model theory: e.g. bisimulation theorems, correspondence theory, duality theory.

Goals

- Give structural accounts of the model theory.
-Rel will do the job.
- Rel has many generalizations. Identify which accommodates the model theory.
-Allegories, i.e. the categories of relations of regular categories.
- In effect, Kripke semantics will be extended to regular categories.

Kripke semantics of modal logic has a successful model theory: e.g. bisimulation theorems, correspondence theory, duality theory.

Goals

- Give structural accounts of the model theory.
-Rel will do the job.
- Rel has many generalizations. Identify which accommodates the model theory.
—Allegories, i.e. the categories of relations of regular categories.
- In effect, Kripke semantics will be extended to regular categories.

Outline

(1) Recast Kripke semantics and its model theory using Rel.
(2) Briefly review allegories.
(3) Give allegorical semantics of modal logic, and model theory.

Kripke Semantics

Interprets propositional logic + modal operators $\square_{i}, \diamond_{i}(i \in I)$.

Kripke Semantics

Interprets propositional logic + modal operators $\square_{i}, \diamond_{i}(i \in I)$.
Two layers of semantic structures:

- A Kripke frame, a set X plus $R_{i}: X \rightarrow X$.

Each R_{i} interprets $\square_{i}, \diamond_{i}$.

- A Kripke model, a frame $\left(X, R_{i}\right)$ plus $\llbracket p \rrbracket \subseteq X$. Each $\llbracket p \rrbracket$ interprets a prop. variable p.

Kripke Semantics

Interprets propositional logic + modal operators $\square_{i}, \diamond_{i}(i \in I)$.
Two layers of semantic structures:

- A Kripke frame, a set X plus $R_{i}: X \rightarrow X$. Each R_{i} interprets $\square_{i}, \diamond_{i}$.
- A Kripke model, a frame $\left(X, R_{i}\right)$ plus $\llbracket p \rrbracket \subseteq X$. Each $\llbracket p \rrbracket$ interprets a prop. variable p.
$x \vDash \varphi \quad$ " φ is true at $x ", \quad$ for a world / state $x \in X$ and a formula φ.

Kripke Semantics

Interprets propositional logic + modal operators $\square_{i}, \diamond_{i}(i \in I)$.
Two layers of semantic structures:

- A Kripke frame, a set X plus $R_{i}: X \rightarrow X$. Each R_{i} interprets $\square_{i}, \diamond_{i}$.
- A Kripke model, a frame $\left(X, R_{i}\right)$ plus $\llbracket p \rrbracket \subseteq X$. Each $\llbracket p \rrbracket$ interprets a prop. variable p.
$x \vDash \varphi \quad$ " φ is true at x ", for a world / state $x \in X$ and a formula φ.

$$
\begin{array}{rlr}
x \vDash p & \Longleftrightarrow x \in \llbracket p \rrbracket & \text { (via the model), } \\
x \vDash \varphi \wedge \psi & \Longleftrightarrow x \vDash \varphi \text { and } x \vDash \psi, & \\
x \vDash \square_{i} \varphi & \Longleftrightarrow y \vDash \varphi \text { for all } y \text { s.th. } x R_{i} y & \text { (via the frame), }, \\
x \vDash \diamond_{i} \varphi & \Longleftrightarrow y \vDash \varphi \text { for some } y \text { s.th. } x R_{i} y & \text { (via the frame). }
\end{array}
$$

"Standard translation": " $x \vDash \varphi$ " $\xrightarrow{\text { tr }} \varphi(x)$

$$
\begin{aligned}
\operatorname{tr}(p) & =P x, \\
\operatorname{tr}(\varphi \wedge \psi) & =\operatorname{tr}(\varphi) \wedge \operatorname{tr}(\psi), \\
\operatorname{tr}\left(\square_{i} \varphi\right) & =\forall y \cdot R_{i} x y \Rightarrow \operatorname{tr}(\varphi)[y / x], \\
\operatorname{tr}\left(\diamond_{i} \varphi\right) & =\exists y \cdot R_{i} x y \wedge \operatorname{tr}(\varphi)[y / x] .
\end{aligned}
$$

"Standard translation": " $x \vDash \varphi$ " $\xrightarrow{\mathrm{tr}} \varphi(x)$

$$
\begin{aligned}
\operatorname{tr}(p) & =P x, \\
\operatorname{tr}(\varphi \wedge \psi) & =\operatorname{tr}(\varphi) \wedge \operatorname{tr}(\psi), \\
\operatorname{tr}\left(\square_{i} \varphi\right) & =\forall y \cdot R_{i} x y \Rightarrow \operatorname{tr}(\varphi)[y / x], \\
\operatorname{tr}\left(\diamond_{i} \varphi\right) & =\exists y \cdot R_{i} x y \wedge \operatorname{tr}(\varphi)[y / x] .
\end{aligned}
$$

Two layers of semantic structures \Longrightarrow two (split) perspectives:

- Bisimulation theorems:
"modal logic is about LTSs (Kripke models)."
- Correspondence theory:
"modal logic is about binary relations (Kripke frames)."
"Standard translation": " $x \vDash \varphi$ " $-\sim \sim \operatorname{tr}_{\sim} \varphi(x)$

$$
\begin{aligned}
\operatorname{tr}(p) & =P x \\
\operatorname{tr}(\varphi \wedge \psi) & =\operatorname{tr}(\varphi) \wedge \operatorname{tr}(\psi) \\
\operatorname{tr}\left(\square_{i} \varphi\right) & =\forall y \cdot R_{i} x y \Rightarrow \operatorname{tr}(\varphi)[y / x] \\
\operatorname{tr}\left(\diamond_{i} \varphi\right) & =\exists y \cdot R_{i} x y \wedge \operatorname{tr}(\varphi)[y / x]
\end{aligned}
$$

Two layers of semantic structures \Longrightarrow two (split) perspectives:

- Bisimulation theorems:
"modal logic is about LTSs (Kripke models)."
- Correspondence theory:
"modal logic is about binary relations (Kripke frames)."
Also, • Duality theory:
Kripke frames $\simeq(\text { powerset algebras with operators })^{\text {op }}$.
"Standard translation": " $x \vDash \varphi$ " $-\sim \sim \operatorname{tr}_{\sim} \varphi(x)$

$$
\begin{aligned}
\operatorname{tr}(p) & =P x \\
\operatorname{tr}(\varphi \wedge \psi) & =\operatorname{tr}(\varphi) \wedge \operatorname{tr}(\psi) \\
\operatorname{tr}\left(\square_{i} \varphi\right) & =\forall y \cdot R_{i} x y \Rightarrow \operatorname{tr}(\varphi)[y / x] \\
\operatorname{tr}\left(\diamond_{i} \varphi\right) & =\exists y \cdot R_{i} x y \wedge \operatorname{tr}(\varphi)[y / x]
\end{aligned}
$$

Two layers of semantic structures \Longrightarrow two (split) perspectives:

- Bisimulation theorems:
"modal logic is about LTSs (Kripke models)."
- Correspondence theory:
"modal logic is about binary relations (Kripke frames)."
Also, • Duality theory:
Kripke frames $\simeq(\text { powerset algebras with operators) })^{\text {op }}$.
Rel gives a more unifying approach to these perspectives.

Also, some variants of modal logic:

- Temporal logic has modalities about the future and about the past, i.e. modalities of opposite relations.
- Dynamic logic has composition and union of transitions.
- "Dynamic epistemic logic" has modalities of transitions across different models.
- Different \vdash_{σ} for different stages σ of computation (e.g. quote and unquote as modalities).

Thus we need involution, union, etc., and categorification-hence Rel.

Semantics Using Rel (take 1)

Every relation $R: X \rightarrow Y$ induces two adjoint pairs:

$$
\begin{aligned}
& \mathcal{P} X \underset{\forall_{R^{\dagger}}}{\stackrel{\exists_{R}}{\stackrel{\perp}{\leftrightarrows}}} \mathcal{P} Y \\
& \mathcal{P} X \underset{\forall_{R}}{\stackrel{\exists_{R^{\dagger}}}{\stackrel{\perp}{\leftrightarrows}}} \mathcal{P} Y \\
& \exists_{R}(S)=\{v \in Y \mid w \in S \text { for some } w \text { s.th. } w R v\}, \\
& \forall_{R}(S)=\{v \in Y \mid w \in S \text { for all } w \text { s.th. } w R v\} .
\end{aligned}
$$

Semantics Using Rel (take 1)

Every relation $R: X \rightarrow Y$ induces two adjoint pairs:

$$
\begin{aligned}
& \mathcal{P} X \underset{\forall_{R^{\dagger}}}{\stackrel{\exists_{R}}{\leftrightarrows}} \mathcal{P} Y \quad \mathcal{P} X \underset{\forall_{R}}{\stackrel{\exists_{R^{\dagger}}}{\longleftrightarrow}} \mathcal{P} Y \\
& \exists_{R}(S)=\{v \in Y \mid w \in S \text { for some } w \text { s.th. } w R v\}, \\
& \forall_{R}(S)=\{v \in Y \mid w \in S \text { for all } w \text { s.th. } w R v\} .
\end{aligned}
$$

E.g. For $R=f$ a function, $\exists_{f} \dashv \forall_{f^{\dagger}}=f^{-1}=\exists_{f^{\dagger}} \dashv \forall_{f}$.

Semantics Using Rel (take 1)

Every relation $R: X \rightarrow Y$ induces two adjoint pairs:

$$
\begin{aligned}
& \mathcal{P} X \underset{\forall_{R^{\dagger}}}{\stackrel{\exists_{R}}{\leftrightarrows}} \mathcal{P} Y \quad \mathcal{P} X \underset{\forall_{R}}{\stackrel{\exists_{R^{\dagger}}}{\longleftrightarrow}} \mathcal{P} Y \\
& \exists_{R}(S)=\{v \in Y \mid w \in S \text { for some } w \text { s.th. } w R v\}, \\
& \forall_{R}(S)=\{v \in Y \mid w \in S \text { for all } w \text { s.th. } w R v\} .
\end{aligned}
$$

E.g. For $R=f$ a function, $\exists_{f} \dashv \forall_{f^{\dagger}}=f^{-1}=\exists_{f^{\dagger}} \dashv \forall_{f}$.
E.g. $\llbracket \diamond \varphi \rrbracket=\exists_{R^{\dagger}} \llbracket \varphi \rrbracket$ and $\llbracket \square \varphi \rrbracket=\forall_{R^{\dagger}} \llbracket \varphi \rrbracket$ for $R: X \rightarrow X$.

We write \quad and $■$ for the opposite, \exists_{R} and \forall_{R}.

Semantics Using Rel (take 1)

Every relation $R: X \rightarrow Y$ induces two adjoint pairs:

$$
\begin{aligned}
& \mathcal{P} X \underset{\forall_{R^{\dagger}}}{\stackrel{\exists_{R}}{\leftrightarrows}} \mathcal{P} Y \quad \mathcal{P} X \underset{\forall_{R}}{\stackrel{\exists_{R^{\dagger}}}{\leftrightarrows}} \mathcal{P} Y \\
& \exists_{R}(S)=\{v \in Y \mid w \in S \text { for some } w \text { s.th. } w R v\}, \\
& \forall_{R}(S)=\{v \in Y \mid w \in S \text { for all } w \text { s.th. } w R v\} .
\end{aligned}
$$

E.g. For $R=f$ a function, $\exists_{f} \dashv \forall_{f^{\dagger}}=f^{-1}=\exists_{f^{\dagger}} \dashv \forall_{f}$.
E.g. $\llbracket \diamond \varphi \rrbracket=\exists_{R^{\dagger}} \llbracket \varphi \rrbracket$ and $\llbracket \square \varphi \rrbracket=\forall_{R^{\dagger}} \llbracket \varphi \rrbracket$ for $R: X \rightarrow X$.

We write and $■$ for the opposite, \exists_{R} and \forall_{R}.
Complete atomic Boolean algebras ("caBas", \simeq powerset algebras):

- caBa $\sqrt{ }$ with all- \vee-preserving maps,
- caBa ${ }_{\wedge}$ with all-^-preserving maps.

Then $\exists_{-}:$Rel $\rightarrow \mathbf{c a B a} \sqrt{\vee}$ and $\forall_{-}:$Rel $\rightarrow \mathbf{c a B a}_{\wedge}$, and moreover \ldots.
$\exists_{-}: \mathbf{R e l} \rightarrow \mathbf{c a B a} \mathbf{a}_{\vee}$ and $\forall_{-}: \mathbf{R e l} \rightarrow \mathbf{c a B a}{ }_{\wedge}$ are (1-) equivalences.
$\exists_{-}: \mathbf{R e l} \rightarrow \mathbf{c a B a} \mathbf{a}_{\vee}$ and $\forall_{-}: \mathbf{R e l} \rightarrow \mathbf{c a B a}{ }_{\wedge}$ are (1-) equivalences.
Thm (Thomason 1975).
Kripke frames $\simeq(\text { caBas with } \vee \text {-preserving operators })^{\circ \mathrm{op}}$.
$\exists_{-}: \mathbf{R e l} \rightarrow \mathbf{c a B a} \mathbf{a}_{\vee}$ and $\forall_{-}: \mathbf{R e l} \rightarrow \mathbf{c a B a}{ }_{\wedge}$ are (1-) equivalences.
Thm (Thomason 1975).
Kripke frames $\simeq(\text { caBas with } \vee \text {-preserving operators })^{\circ}{ }^{\mathrm{op}}$.

Thm. Bisimulations preserve satisfaction.
Pf. Because they are spans of homomorphisms.

Rel is moreover enriched in Pos.

Rel is moreover enriched in Pos.

- $\exists_{-}: \mathbf{R e l} \rightarrow \mathbf{c a B a}{ }_{\vee}$ is a 2-equivalence.
- $\exists_{-\uparrow}: \mathbf{R e l}^{\mathrm{op}} \rightarrow \mathbf{c a B a}{ }_{\vee}$ is a 1-cell duality.
- \forall_{-}: $\mathbf{R e l}^{\text {co }} \rightarrow \mathbf{\mathbf { c a B a } _ { \wedge }}$ is a 2 -cell duality.
- $\forall_{-\uparrow}: \mathbf{R e l}^{\text {coop }} \rightarrow \mathbf{c a B a} \mathbf{a}_{\wedge}$ is a biduality.

Rel is moreover enriched in Pos.

- $\exists_{-}: \mathbf{R e l} \rightarrow \mathbf{c a B a}{ }_{\vee}$ is a 2-equivalence.
- $\exists_{-\uparrow}: \mathbf{R e l}^{\mathrm{op}} \rightarrow \mathbf{c a B a}{ }_{\vee}$ is a 1-cell duality.
- $\forall_{-}: \mathbf{R e l}^{\text {co }} \rightarrow \mathbf{c a B a} \mathbf{a}_{\wedge}$ is a 2-cell duality.
- $\forall_{-\uparrow}: \mathbf{R e l}^{\text {coop }} \rightarrow \mathbf{c a B a}{ }_{\wedge}$ is a biduality.

Thm (Lemmon-Scott 1977). $\left(R^{n}\right)^{\dagger} ; R^{m} \subseteq R^{\ell} ;\left(R^{k}\right)^{\dagger}$ corresponds to $\diamond^{m} \square^{k} \varphi \vdash \square^{n} \diamond^{\ell} \varphi, \quad \diamond^{n} \square^{\ell} \varphi \vdash \square^{m} \diamond^{k} \varphi$.

Pf. $\begin{aligned} & \frac{\left(R^{n}\right)^{\dagger} ; R^{m} \subseteq R^{\ell} ;\left(R^{k}\right)^{\dagger}}{\diamond^{n} \circ \diamond^{m} \leqslant \nabla^{\ell} \circ \diamond^{k}} \\ & \frac{\diamond^{m} \leqslant \square^{n} \circ \diamond^{\ell} \circ \diamond^{k}}{\diamond^{m} \circ \square^{k} \leqslant \square^{n} \circ \diamond^{\ell}}\end{aligned}$
$\frac{\left(R^{n}\right)^{\dagger} ; R^{m} \subseteq R^{\ell} ;\left(R^{k}\right)^{\dagger}}{\square^{\ell} \circ \mathbf{\square}^{k} \leqslant \mathbf{\square}^{n} \circ \square^{m}}$
$\overline{\diamond^{n} \circ \square^{\ell} \circ \mathbf{\square}^{k} \leqslant \square^{m}}$
$\diamond^{n} \circ \square^{\ell} \leqslant \square^{m} \circ \diamond^{k}$
E.g. $\bullet \varphi \vdash \diamond \varphi, \square \varphi \vdash \varphi \Longleftrightarrow 1 \subseteq R$ (reflexivity);

- $\diamond \diamond \varphi \vdash \diamond \varphi, \square \varphi \vdash \square \square \varphi \Longleftrightarrow R ; R \subseteq R$ (transitivity);
- $\varphi \vdash \square \diamond \varphi, \diamond \square \varphi \vdash \varphi \Longleftrightarrow R^{\dagger} \subseteq R$ (symmetry).

Semantics in Rel (take 2)

Worlds $x \in X$ are functions $x: 1 \rightarrow X$, or $\langle x-$, "states".
Propositions $\varphi \subseteq X$ are relations $\varphi: X \nrightarrow 1$, or $-\varphi$, "effects".

Semantics in Rel (take 2)

Worlds $x \in X$ are functions $x: 1 \rightarrow X$, or $\langle x-$, "states".
Propositions $\varphi \subseteq X$ are relations $\varphi: X \rightarrow 1$, or $-\varphi$, "effects".
So the three components of Kripke frames and models become

$$
\left\langle x-\quad-\quad-R_{i}-\quad-\mathbb{D}\right\rangle .
$$

Semantics in Rel (take 2)

Worlds $x \in X$ are functions $x: 1 \rightarrow X$, or $\langle x-$, "states".
Propositions $\varphi \subseteq X$ are relations $\varphi: X \rightarrow 1$, or $-\varphi$, "effects".
So the three components of Kripke frames and models become

$$
\left\langle x-\quad-\quad-R_{i}-\quad-\mid p\right\rangle
$$

The truth of $x \vDash \varphi$ is given by the "generalized Born rule":

Semantics in Rel (take 2)

Worlds $x \in X$ are functions $x: 1 \rightarrow X$, or $\langle x-$, "states".
Propositions $\varphi \subseteq X$ are relations $\varphi: X \rightarrow 1$, or $-\varphi$, "effects".
So the three components of Kripke frames and models become

$$
\left\langle x-\quad-\quad-R_{i}-\quad-\mid p\right\rangle
$$

The truth of $x \vDash \varphi$ is given by the "generalized Born rule":

$x \vDash \diamond \varphi$ is

Semantics in Rel (take 2)

Worlds $x \in X$ are functions $x: 1 \rightarrow X$, or $\langle x-$, "states".
Propositions $\varphi \subseteq X$ are relations $\varphi: X \rightarrow 1$, or $-\varphi$, "effects".
So the three components of Kripke frames and models become

$$
\left\langle x-\quad-\sqrt{R_{i}}-, \quad-\mathbb{D}\right.
$$

The truth of $x \vDash \varphi$ is given by the "generalized Born rule":

$x \vDash \diamond \varphi$ is

Validity of $p \vdash \diamond p$ in a Kripke frame is

Semantics in Rel (take 2)

Worlds $x \in X$ are functions $x: 1 \rightarrow X$, or $\langle x-$, "states".
Propositions $\varphi \subseteq X$ are relations $\varphi: X \rightarrow 1$, or $-\varphi$, "effects".
So the three components of Kripke frames and models become

$$
\left\langle x-\quad-\sqrt{R_{i}}-, \quad-\mathbb{D}\right.
$$

The truth of $x \vDash \varphi$ is given by the "generalized Born rule":

$x \vDash \diamond \varphi$ is

Validity of $p \vdash \diamond p$ in a Kripke frame is

Allegories

There are many categorical generalizations of Rel. Which of them admits the foregoing approach to modal logic? - Allegories!

Def. An allegory \mathcal{A} is a Pos-enriched \dagger-category in which

- each $\mathcal{A}(X, Y)$ has a binary meet, • \dagger preserves \subseteq and \cap,
- semi-distributivity: $R ;(S \cap T) \subseteq(R ; S) \cap(R ; T)$,
- the modular law: $(S ; R) \cap T \subseteq\left(S \cap\left(T ; R^{\dagger}\right)\right) ; R$.

Allegories

There are many categorical generalizations of Rel. Which of them admits the foregoing approach to modal logic? - Allegories!

Def. An allegory \mathcal{A} is a Pos-enriched \dagger-category in which

- each $\mathcal{A}(X, Y)$ has a binary meet, • \dagger preserves \subseteq and \cap,
- semi-distributivity: $R ;(S \cap T) \subseteq(R ; S) \cap(R ; T)$,
- the modular law: $(S ; R) \cap T \subseteq\left(S \cap\left(T ; R^{\dagger}\right)\right) ; R$.

Allegories

There are many categorical generalizations of Rel. Which of them admits the foregoing approach to modal logic? - Allegories!

Def. An allegory \mathcal{A} is a Pos-enriched \dagger-category in which

- each $\mathcal{A}(X, Y)$ has a binary meet, • \dagger preserves \subseteq and \cap,
- semi-distributivity: $R ;(S \cap T) \subseteq(R ; S) \cap(R ; T)$,
- the modular law: $(S ; R) \cap T \subseteq\left(S \cap\left(T ; R^{\dagger}\right)\right) ; R$.

$R: X \rightarrow X$ is \bullet reflexive if $1_{X} \subseteq R$,
- transitive if $R ; R \subseteq R$,
- symmetric if $R^{\dagger} \subseteq R$. $R: X \rightarrow Y$ is \bullet total if $1_{X} \subseteq R ; R^{\dagger}$,
- simple, or is a partial map, if $R^{\dagger} ; R \subseteq 1_{Y}$,
- a map if it is total and simple (i.e. if it is a left adjoint).
$R: X \rightarrow X$ is \bullet reflexive if $1_{X} \subseteq R$,
- transitive if $R ; R \subseteq R$,
- symmetric if $R^{\dagger} \subseteq R$. $R: X \rightarrow Y$ is \bullet total if $1_{X} \subseteq R ; R^{\dagger}$,
- simple, or is a partial map, if $R^{\dagger} ; R \subseteq 1_{Y}$,
- a map if it is total and simple (i.e. if it is a left adjoint).
$\mathcal{A} \longmapsto \operatorname{Map}(\mathcal{A})$
$\boldsymbol{\operatorname { R e l }}(C) \longleftarrow C$
$R: X \rightarrow X$ is \bullet reflexive if $1_{X} \subseteq R$,
- transitive if $R ; R \subseteq R$, - symmetric if $R^{\dagger} \subseteq R$. $R: X \rightarrow Y$ is \bullet total if $1_{X} \subseteq R ; R^{\dagger}$,
- simple, or is a partial map, if $R^{\dagger} ; R \subseteq 1_{Y}$,
- a map if it is total and simple (i.e. if it is a left adjoint).

Fact.

allegories	categories
unital and tabular	regular

Def. \mathcal{A} is unital if it has a "unit" (\approx a terminal obj. of $\operatorname{Map}(\mathcal{A})$).
Def. \mathcal{A} is tabular if every relation is "tabulated" by a jointly monic pair of maps.
$R: X \rightarrow X$ is • reflexive if $1_{X} \subseteq R$,

- transitive if $R ; R \subseteq R$, - symmetric if $R^{\dagger} \subseteq R$. $R: X \rightarrow Y$ is • total if $1_{X} \subseteq R ; R^{\dagger}$,
- simple, or is a partial map, if $R^{\dagger} ; R \subseteq 1_{Y}$,
- a map if it is total and simple (i.e. if it is a left adjoint).

Fact.

allegories	categories	logic
unital and tabular	regular	$\top, \wedge, \exists,=$

Def. \mathcal{A} is unital if it has a "unit" (\approx a terminal obj. of $\operatorname{Map}(\mathcal{A})$).
Def. \mathcal{A} is tabular if every relation is "tabulated" by a jointly monic pair of maps.
$R: X \rightarrow X$ is • reflexive if $1_{X} \subseteq R$,

- transitive if $R ; R \subseteq R$,
- symmetric if $R^{\dagger} \subseteq R$. $R: X \rightarrow Y$ is \bullet total if $1_{X} \subseteq R ; R^{\dagger}$,
- simple, or is a partial map, if $R^{\dagger} ; R \subseteq 1_{Y}$,
- a map if it is total and simple (i.e. if it is a left adjoint).

Fact.

$\operatorname{Rel}(C) \longleftarrow \cong$

allegories	categories	logic
unital and tabular	regular	$\mathrm{T}, \wedge, \exists,=$
+ "distributive"	coherent (pre-logoi)	\perp, \vee
+ "division"	Heyting (logoi)	\Rightarrow, \forall
+ "power"	topoi	\in

Def. \mathcal{A} is unital if it has a "unit" (\approx a terminal obj. of $\operatorname{Map}(\mathcal{A})$).
Def. \mathcal{A} is tabular if every relation is "tabulated" by a jointly monic pair of maps.
$R: X \rightarrow X$ is • reflexive if $1_{X} \subseteq R$,

- transitive if $R ; R \subseteq R$,
- symmetric if $R^{\dagger} \subseteq R$. $R: X \rightarrow Y$ is \bullet total if $1_{X} \subseteq R ; R^{\dagger}$,
- simple, or is a partial map, if $R^{\dagger} ; R \subseteq 1_{Y}$,
- a map if it is total and simple (i.e. if it is a left adjoint).

Fact.

$\operatorname{Rel}(C) \longleftarrow \cong$

allegories	categories	logic
unital and tabular	regular	$\mathrm{T}, \wedge, \exists,=, \diamond$
+ "distributive"	coherent (pre-logoi)	\perp, \vee
+ "division"	Heyting (logoi)	$\Rightarrow, \forall, \square$
+ "power"	topoi	\in

Def. \mathcal{A} is unital if it has a "unit" (\approx a terminal obj. of $\operatorname{Map}(\mathcal{A})$).
Def. \mathcal{A} is tabular if every relation is "tabulated" by a jointly monic pair of maps.

Subobjects

Two allegorical expressions for $\operatorname{Sub}_{\operatorname{Map}(\mathcal{A})}(X)$:

- $R: X \rightarrow X$ is correflexive, or is a "core", if $R \subseteq 1_{X}$. $\operatorname{Cor}(X)$, the cores on X.
- $\mathcal{A}(X, 1)$, the effects on X.

Subobjects

Two allegorical expressions for $\operatorname{Sub}_{\operatorname{Map}(\mathcal{A})}(X)$:

- $R: X \rightarrow X$ is correflexive, or is a "core", if $R \subseteq 1_{X}$.
$\operatorname{Cor}(X)$, the cores on X.
- $\mathcal{A}(X, 1)$, the effects on X.

Fact. In a unital allegory \mathcal{A}, define

($\mathrm{T}_{(Y, 1)}$ is the top element of $\mathcal{A}(Y, 1)$, which exists in a unital \mathcal{A}.)

Subobjects

Two allegorical expressions for $\operatorname{Sub}_{\operatorname{Map}(\mathcal{A})}(X)$:

- $R: X \mapsto X$ is correflexive, or is a "core", if $R \subseteq 1_{X}$.
$\operatorname{Cor}(X)$, the cores on X.
- $\mathcal{A}(X, 1)$, the effects on X.

Fact. In a unital allegory \mathcal{A}, define

($\mathrm{T}_{(Y, 1)}$ is the top element of $\mathcal{A}(Y, 1)$, which exists in a unital \mathcal{A}.)
Then the diagram commutes; the bottom edges are isomorphisms.
If moreover \mathcal{A} is tabular, $\operatorname{Cor}(X) \cong \mathcal{A}(X, 1) \cong \operatorname{Sub}_{\text {Map }(\mathcal{A})}(X)$.

Def. \mathcal{A} is distributive if each $\mathcal{A}(X, Y)$ is a distributive lattice and pre- and post-compositions preserve \cup.

Def. \mathcal{A} is distributive if each $\mathcal{A}(X, Y)$ is a distributive lattice and pre- and post-compositions preserve \cup.

Def. \mathcal{A} is a division allegory if compositions have right adjoints. For $R: X \rightarrow Y$,

$$
\begin{aligned}
& \mathcal{A}(Y, Z) \underset{R \backslash-}{\stackrel{R ;-}{\rightleftarrows}} \mathcal{A}(X, Z) \\
& \begin{array}{c}
R ; S \subseteq T \\
S \subseteq R \backslash T
\end{array} \\
& \mathcal{A}(Z, X) \underset{-/ R}{\stackrel{-; R}{\stackrel{\perp}{\rightleftarrows}}} \mathcal{A}(Z, Y) \\
& \frac{S ; R \subseteq T}{S \subseteq T / R}
\end{aligned}
$$

Def. \mathcal{A} is distributive if each $\mathcal{A}(X, Y)$ is a distributive lattice and pre- and post-compositions preserve \cup.
Def. \mathcal{A} is a division allegory if compositions have right adjoints. For $R: X \rightarrow Y$,
E.g.

$$
\mathcal{P}(Y) \underset{{ }^{\prime}}{\stackrel{\exists_{R^{\dagger}}=R ;-}{\stackrel{\perp}{\forall_{R}=R \backslash-}}} \mathcal{P}(X)
$$

$$
\mathcal{P}(X) \stackrel{\exists_{R}=R^{\dagger} ;-}{\stackrel{\perp}{\leftrightarrows}} \mathcal{P}(Y)
$$

$$
\begin{aligned}
& \begin{array}{c}
R ; S \subseteq T \\
S \subseteq R \backslash T
\end{array} \\
& \xlongequal[S \subseteq R \subseteq T]{S \subseteq T / R}
\end{aligned}
$$

Def. \mathcal{A} is distributive if each $\mathcal{A}(X, Y)$ is a distributive lattice and pre- and post-compositions preserve \cup.
Def. \mathcal{A} is a division allegory if compositions have right adjoints. For $R: X \mapsto Y$,

$$
\begin{aligned}
& \begin{aligned}
R ; S \subseteq T \\
S \subseteq R \backslash T
\end{aligned}
\end{aligned}
$$

E.g.

$$
\mathcal{P}(Y) \underset{{ }^{\prime}}{\stackrel{\exists_{R^{\dagger}}=R ;-}{\leftrightarrows}} \mathcal{\perp}(X)
$$

$$
\mathcal{P}(X) \stackrel{\exists_{R}=R^{\dagger} ;-}{\stackrel{\exists^{\prime}}{\leftrightarrows}} \mathcal{P}(Y)
$$

We extend this and write

$$
\mathcal{A}(Y, 1) \underset{\underset{\forall_{R}=R \backslash-}{\stackrel{\exists}{R^{\dagger}}=R ;-}}{\stackrel{\perp}{\leftrightarrows}} \mathcal{A}(X, 1) \quad \mathcal{A}(X, 1) \underset{\exists_{R}=R^{\dagger} ;--}{\stackrel{\exists_{R}}{\leftrightarrows}} \mathcal{A}(Y, 1)
$$

Allegorical Semantics

The interpretation on the cores $\operatorname{Cor}(X)$ amounts to the following on the effects $\mathcal{A}(X, 1)$:

$$
\begin{aligned}
\llbracket \varphi \wedge \psi \rrbracket & =\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket=\overline{\llbracket \varphi \rrbracket} ; \llbracket \psi \rrbracket, \\
\llbracket \varphi \vee \psi \rrbracket & =\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket, \\
\llbracket \varphi \Rightarrow \psi \rrbracket & =\overline{\llbracket \varphi \rrbracket} \backslash \llbracket \psi \rrbracket, \\
\llbracket \neg \varphi \rrbracket & =\llbracket \varphi \Rightarrow \perp \rrbracket, \\
\llbracket \supset \rrbracket & =\top_{(X, 1)}, \\
\llbracket \perp \rrbracket & =\perp_{(X, 1)} .
\end{aligned}
$$

Allegorical Semantics

The interpretation on the cores $\operatorname{Cor}(X)$ amounts to the following on the effects $\mathcal{A}(X, 1)$:

$$
\begin{aligned}
\llbracket \varphi \wedge \psi \rrbracket & =\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket=\overline{\llbracket \varphi \rrbracket} ; \llbracket \psi \rrbracket, \\
\llbracket \varphi \vee \psi \rrbracket & =\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket, \\
\llbracket \varphi \Rightarrow \psi \rrbracket & =\overline{\llbracket \varphi \rrbracket} \backslash \llbracket \psi \rrbracket, \\
\llbracket \neg \varphi \rrbracket & =\llbracket \varphi \Rightarrow \perp \rrbracket, \\
\llbracket \supset \rrbracket & =\top_{(X, 1)}, \\
\llbracket \perp \rrbracket & =\perp_{(X, 1)} .
\end{aligned}
$$

To this, add, for each $R_{i}: X \rightarrow X$,

$$
\begin{aligned}
\llbracket \diamond_{i} \varphi \rrbracket & =R_{i} ; \llbracket \varphi \rrbracket, \\
\llbracket \square_{i} \varphi \rrbracket & =R_{i}^{\dagger} \backslash \llbracket \varphi \rrbracket .
\end{aligned}
$$

Syntax

- Basic types τ.
- Each prop. variable p has a basic type $p: \tau$.
- Each label i of modal operators has a type $i: \tau \rightarrow \tau^{\prime}$.
- Different prop. constants $\mathrm{T}_{\tau}, \perp_{\tau}: \tau$ for each different τ.

Syntax

- Basic types τ.
- Each prop. variable p has a basic type $p: \tau$.
- Each label i of modal operators has a type $i: \tau \rightarrow \tau^{\prime}$.
- Different prop. constants $\mathrm{T}_{\tau}, \perp_{\tau}: \tau$ for each different τ.

$$
\overline{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash p, \top_{\tau}, \perp_{\tau}: \tau} \quad \overline{\vdash i: \tau \rightarrow \tau^{\prime}}
$$

Syntax

- Basic types τ.
- Each prop. variable p has a basic type $p: \tau$.
- Each label i of modal operators has a type $i: \tau \rightarrow \tau^{\prime}$.
- Different prop. constants $\mathrm{T}_{\tau}, \perp_{\tau}: \tau$ for each different τ.

$$
\begin{gathered}
\overline{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash p, \top_{\tau}, \perp_{\tau}: \tau} \quad \overline{\vdash i: \tau \rightarrow \tau^{\prime}} \\
\frac{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \varphi: \tau \quad p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \psi: \tau}{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \varphi \wedge \psi, \varphi \vee \psi, \varphi \Rightarrow \psi: \tau} \\
\frac{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \varphi: \tau}{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \neg \varphi: \tau}
\end{gathered}
$$

Syntax

- Basic types τ.
- Each prop. variable p has a basic type $p: \tau$.
- Each label i of modal operators has a type $i: \tau \rightarrow \tau^{\prime}$.
- Different prop. constants $\mathrm{T}_{\tau}, \perp_{\tau}: \tau$ for each different τ.

$$
\begin{gathered}
\hline p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash p, \top_{\tau}, \perp_{\tau}: \tau \\
\frac{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \varphi: \tau \quad p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \psi: \tau}{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \varphi \wedge \psi, \varphi \vee \psi, \varphi \Rightarrow \psi: \tau} \\
\frac{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \varphi: \tau}{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \neg \varphi: \tau} \\
\frac{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \varphi: \tau \quad \vdash i: \tau \rightarrow \tau^{\prime}}{p_{1}: \tau_{1}, \ldots, p_{n}: \tau_{n} \vdash \diamond_{i} \varphi, \square_{i} \varphi: \tau^{\prime}}
\end{gathered}
$$

Frames and Models

Generate a category \mathbf{D} from basic types τ and labels $i: \tau \rightarrow \tau^{\prime}$.

Frames and Models

Generate a category \mathbf{D} from basic types τ and labels $i: \tau \rightarrow \tau^{\prime}$. Kripke frames can then be generalized by
Def. A frame diagram in \mathcal{A} is a $\llbracket-\rrbracket: \mathbf{D}^{\mathrm{op}} \rightarrow \mathcal{A}$.
$\stackrel{\tau}{i}{ }_{\tau^{\prime}}$
$\llbracket \tau \rrbracket$
$\llbracket i \rrbracket \uparrow$
$\llbracket \tau^{\prime} \rrbracket$
$\mathcal{A}(\llbracket \tau \rrbracket, 1) \quad \llbracket \varphi \rrbracket$

$\mathcal{A}\left(\llbracket \tau^{\prime} \rrbracket, 1\right) \quad \llbracket \diamond_{i} \varphi \rrbracket$

Frames and Models

Generate a category \mathbf{D} from basic types τ and labels $i: \tau \rightarrow \tau^{\prime}$.
Kripke frames can then be generalized by
Def. A frame diagram in \mathcal{A} is a $\llbracket-\rrbracket: \mathbf{D}^{\mathrm{op}} \rightarrow \mathcal{A}$.

Let \mathbf{D}_{*} be \mathbf{D} with an object $*$ and labels $p: * \rightarrow \tau$ added.
Def. A model diagram in \mathcal{A} is a $\llbracket-\rrbracket: \mathbf{D}_{*}{ }^{\text {op }} \rightarrow \mathcal{A}$ s.th. $\llbracket * \rrbracket=1$.

Frames and Models

Generate a category \mathbf{D} from basic types τ and labels $i: \tau \rightarrow \tau^{\prime}$.
Kripke frames can then be generalized by
Def. A frame diagram in \mathcal{A} is a $\llbracket-\rrbracket: \mathbf{D}^{\mathrm{op}} \rightarrow \mathcal{A}$.

Let \mathbf{D}_{*} be \mathbf{D} with an object $*$ and labels $p: * \rightarrow \tau$ added.
Def. A model diagram in \mathcal{A} is a $\llbracket-\rrbracket: \mathbf{D}_{*}{ }^{\text {op }} \rightarrow \mathcal{A}$ s.th. $\llbracket * \rrbracket=1$.

D may have more structure: e.g. \dagger for temporal, \cup for dynamic logics.

Interpretation

For propositions of type τ,

$$
\begin{aligned}
\llbracket \varphi \wedge \psi \rrbracket & =\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket=\overline{\llbracket \varphi \rrbracket} ; \llbracket \psi \rrbracket, \\
\llbracket \varphi \vee \psi \rrbracket & =\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket, \\
\llbracket \varphi \Rightarrow \psi \rrbracket & =\overline{\llbracket \varphi \rrbracket} \backslash \llbracket \psi \rrbracket, \\
\llbracket \neg \varphi \rrbracket & =\llbracket \varphi \Rightarrow \perp_{\tau} \rrbracket, \\
\llbracket \top_{\tau} \rrbracket & =\mathrm{T}_{(\llbracket \tau \rrbracket, 1)}, \\
\llbracket \perp_{\tau} \rrbracket & =\perp_{(\llbracket \tau \rrbracket, 1)} .
\end{aligned}
$$

For $i: \tau \rightarrow \tau^{\prime}$, given $\llbracket \varphi \rrbracket: \llbracket \tau \rrbracket \rightarrow 1$,

$$
\begin{aligned}
\llbracket \diamond_{i} \varphi \rrbracket & =\llbracket i \rrbracket ; \llbracket \varphi \rrbracket: \llbracket \tau^{\prime} \rrbracket \rightarrow 1, \\
\llbracket \square_{i} \varphi \rrbracket & =\llbracket i \rrbracket^{\dagger} \backslash \llbracket \varphi \rrbracket: \llbracket \tau^{\prime} \rrbracket \rightarrow 1 .
\end{aligned}
$$

Example

Simpson's (1994) semantics in terms of "birelation models":

- A frame is a poset (X, \leqslant) plus $R: X \rightarrow X$ s.th.

- Each $\llbracket p \rrbracket \subseteq X$ is \leqslant-upward closed.

This is to take our allegorical semantics in the allegory of posets and bisimulations.
($\llbracket p \rrbracket \subseteq X$ is \leqslant-upward closed iff $\llbracket p \rrbracket: X \rightarrow 1$ is a bisimulation.)

Maps of diagrams and bisimulations

Def. A map of diagrams is a map-valued natural transformation.

$$
\begin{array}{cc}
\tau \\
i]_{\tau^{\prime}}^{\tau} & \llbracket \tau \rrbracket_{1} \xrightarrow{\alpha_{\tau}} \llbracket \tau \tau \rrbracket_{2} \\
\llbracket i \rrbracket_{1} \uparrow \\
\llbracket \tau^{\prime} \rrbracket_{1} \xrightarrow[\alpha_{\tau^{\prime}}]{ } & \llbracket \tau^{\prime} \rrbracket_{2}
\end{array}
$$

Maps of diagrams and bisimulations

Def. A map of diagrams is a map-valued natural transformation.

$$
\begin{array}{cc}
\tau & \llbracket \tau \rrbracket_{1} \xrightarrow{\alpha_{\tau}} \llbracket \tau \rrbracket_{2} \\
i \downarrow \\
\tau^{\prime} & \llbracket i \rrbracket_{1} \uparrow \\
\llbracket \tau^{\prime} \rrbracket_{1} \xrightarrow[\alpha_{\tau^{\prime}}]{\longrightarrow} & \llbracket \tau^{\prime} \rrbracket_{2}
\end{array}
$$

Thm.

Thm. The correspondence below extends to every \mathcal{A}.

Thm. The correspondence below extends to every \mathcal{A}.

Def. A bisimulation of diagrams is a span of maps.

Thm. The correspondence below extends to every \mathcal{A}.

Def. A bisimulation of diagrams is a span of maps.
Thm.

Duality and correspondence

For a nice enough \mathcal{A}, we have order embeddings

$$
\exists_{-\uparrow}: \mathcal{A}(X, Y) \rightarrow \operatorname{Pos}(\mathcal{A}(Y, 1), \mathcal{A}(X, 1))
$$

and order-reversing embeddings

$$
\forall_{-\uparrow}: \mathcal{A}(X, Y) \rightarrow \operatorname{Pos}(\mathcal{A}(Y, 1), \mathcal{A}(X, 1)) .
$$

Duality and correspondence

For a nice enough \mathcal{A}, we have order embeddings

$$
\exists_{-\uparrow}: \mathcal{A}(X, Y) \rightarrow \operatorname{Pos}(\mathcal{A}(Y, 1), \mathcal{A}(X, 1))
$$

and order-reversing embeddings

$$
\forall_{-\uparrow}: \mathcal{A}(X, Y) \rightarrow \operatorname{Pos}(\mathcal{A}(Y, 1), \mathcal{A}(X, 1)) .
$$

Thm. In such an \mathcal{A}, the condition $R_{1}^{\dagger} ; R_{2} \subseteq R_{3} ; R_{4}^{\dagger}$ corresponds to

$$
\diamond_{2} \square_{4} \varphi \vdash \square_{1} \diamond_{3} \varphi, \quad \diamond_{1} \square_{3} \varphi \vdash \square_{2} \diamond_{4} \varphi
$$

Duality and correspondence

For a nice enough \mathcal{A}, we have order embeddings

$$
\exists_{-\uparrow}: \mathcal{A}(X, Y) \rightarrow \operatorname{Pos}(\mathcal{A}(Y, 1), \mathcal{A}(X, 1))
$$

and order-reversing embeddings

$$
\forall_{-\uparrow}: \mathcal{A}(X, Y) \rightarrow \operatorname{Pos}(\mathcal{A}(Y, 1), \mathcal{A}(X, 1)) .
$$

Thm. In such an \mathcal{A}, the condition $R_{1}^{\dagger} ; R_{2} \subseteq R_{3} ; R_{4}^{\dagger}$ corresponds to

$$
\diamond_{2} \square_{4} \varphi \vdash \square_{1} \diamond_{3} \varphi, \quad \diamond_{1} \square_{3} \varphi \vdash \square_{2} \diamond_{4} \varphi
$$

Indeed, (the intuitionistic version of) the much stronger "calculus for correspondence" (Conradie et al. 2014) is sound in any division \mathcal{A} s.th. $\operatorname{Map}(\mathcal{A})$ is well-pointed.

Standard translation into categorical logic of $\operatorname{Map}(\mathcal{A})$.

$$
\begin{aligned}
(x: T \mid \operatorname{tr}(p: \tau)) & =(x: T \mid P x), \\
(x: T \mid \operatorname{tr}(\perp: \tau)) & =(x: T \mid x \neq x), \\
(x: T \mid \operatorname{tr}(\varphi \wedge \psi: \tau)) & =(x: T \mid \operatorname{tr}(\varphi: \tau) \wedge \operatorname{tr}(\psi: \tau)), \\
\left(x: T \mid \operatorname{tr}\left(\square_{i} \varphi: \tau\right)\right) & =\left(x: T \mid \forall y: T^{\prime}\left(R_{i} x y \Rightarrow \operatorname{tr}\left(\varphi: \tau^{\prime}\right)[y / x]\right),\right. \\
\left(x: T \mid \operatorname{tr}\left(\diamond_{i} \varphi: \tau\right)\right) & =\left(x: T \mid \exists y: T^{\prime}\left(R_{i} x y \wedge \operatorname{tr}\left(\varphi: \tau^{\prime}\right)[y / x]\right) .\right.
\end{aligned}
$$

Logic of the semantics

Since $\exists_{R^{\dagger}}$ and $\forall_{R^{\dagger}}$ are left and right adjoints,

$$
\begin{array}{cc}
\frac{\varphi \vdash_{\tau} \psi}{\diamond \varphi \vdash_{\tau^{\prime}} \diamond \psi} & \frac{\varphi \vdash_{\tau} \psi}{\square \varphi \vdash_{\tau^{\prime}} \square \psi} \\
\diamond(\varphi \vee \psi) \vdash_{\tau^{\prime}} \diamond \varphi \vee \diamond \psi & \square \varphi \wedge \square \psi \vdash_{\tau^{\prime}} \square(\varphi \wedge \psi) \\
\diamond \perp_{\tau} \vdash_{\tau^{\prime}} \perp_{\tau^{\prime}} & \mathrm{T}_{\tau^{\prime}} \vdash_{\tau^{\prime}} \square \mathrm{T}_{\tau}
\end{array}
$$

Logic of the semantics

Since $\exists_{R^{\dagger}}$ and $\forall_{R^{\dagger}}$ are left and right adjoints,

$$
\begin{array}{cc}
\frac{\varphi \vdash_{\tau} \psi}{\diamond \varphi \vdash_{\tau^{\prime}} \diamond \psi} & \frac{\varphi \vdash_{\tau} \psi}{\square \varphi \vdash_{\tau^{\prime}} \square \psi} \\
\diamond(\varphi \vee \psi) \vdash_{\tau^{\prime}} \diamond \varphi \vee \diamond \psi & \square \varphi \wedge \square \psi \vdash_{\tau^{\prime}} \square(\varphi \wedge \psi) \\
\diamond \perp_{\tau} \vdash_{\tau^{\prime}} \perp_{\tau^{\prime}} & \mathrm{T}_{\boldsymbol{\tau}^{\prime}} \vdash_{\tau^{\prime}} \square \mathrm{T}_{\tau}
\end{array}
$$

The following are sound by the modular law.

$$
\begin{gathered}
\diamond \varphi \wedge \square \chi \vdash \diamond(\varphi \wedge \chi) \\
(\diamond \varphi \Rightarrow \square \psi) \vdash \square(\varphi \Rightarrow \psi)
\end{gathered}
$$

Logic of the semantics

Since $\exists_{R^{\dagger}}$ and $\forall_{R^{\dagger}}$ are left and right adjoints,

$$
\begin{array}{cc}
\frac{\varphi \vdash_{\tau} \psi}{\diamond \varphi \vdash_{\tau^{\prime}} \diamond \psi} & \frac{\varphi \vdash_{\tau} \psi}{\square \varphi \vdash_{\tau^{\prime}} \square \psi} \\
\diamond(\varphi \vee \psi) \vdash_{\tau^{\prime}} \diamond \varphi \vee \diamond \psi & \square \varphi \wedge \square \psi \vdash_{\tau^{\prime}} \square(\varphi \wedge \psi) \\
\diamond \perp_{\tau} \vdash_{\tau^{\prime}} \perp_{\tau^{\prime}} & \mathrm{T}_{\boldsymbol{\tau}^{\prime}} \vdash_{\tau^{\prime}} \square \mathrm{T}_{\tau}
\end{array}
$$

The following are sound by the modular law.

$$
\begin{gathered}
\diamond \varphi \wedge \square \chi \vdash \diamond(\varphi \wedge \chi) \\
(\diamond \varphi \Rightarrow \square \psi) \vdash \square(\varphi \Rightarrow \psi)
\end{gathered}
$$

This is in fact a typed version of IK (the logic of Simpson's (1994) semantics). Call it tIK.

Logic of the semantics

Since $\exists_{R^{\dagger}}$ and $\forall_{R^{\dagger}}$ are left and right adjoints,

$$
\begin{array}{cc}
\frac{\varphi \vdash_{\tau} \psi}{\diamond \varphi \vdash_{\tau^{\prime}} \diamond \psi} & \frac{\varphi \vdash_{\tau} \psi}{\square \varphi \vdash_{\tau^{\prime}} \square \psi} \\
\diamond(\varphi \vee \psi) \vdash_{\tau^{\prime}} \diamond \varphi \vee \diamond \psi & \square \varphi \wedge \square \psi \vdash_{\tau^{\prime}} \square(\varphi \wedge \psi) \\
\diamond \perp_{\tau} \vdash_{\tau^{\prime}} \perp_{\tau^{\prime}} & \mathrm{T}_{\boldsymbol{\tau}^{\prime}} \vdash_{\tau^{\prime}} \square \mathrm{T}_{\tau}
\end{array}
$$

The following are sound by the modular law.

$$
\begin{gathered}
\diamond \varphi \wedge \square \chi \vdash \diamond(\varphi \wedge \chi) \\
(\diamond \varphi \Rightarrow \square \psi) \vdash \square(\varphi \Rightarrow \psi)
\end{gathered}
$$

This is in fact a typed version of IK (the logic of Simpson's (1994) semantics). Call it tIK.

Thm. tIK is sound and complete w.r.t. all allegorical semantics.

Future Work

- More on bisimulation theorems. In particular, Hennessy-Milner and van Benthem-type theorems.
- Model-checking.
- More variants of modal logic. E.g. fixed point logic.
- Axiomatization of smaller fragments. E.g. without division structure.
- Axiomatization of particular base logics. E.g. the allegory of fuzzy relations.
- In particular, $\operatorname{Rel}(C)$ as models of quantum theory (Heunen-Tull 2015).
- Diagrammatic methods for the distribution and division structures.

